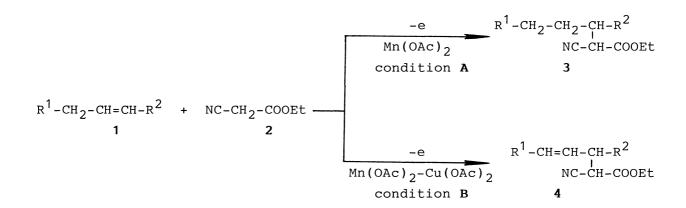
Selective Coupling of Non-Activated Olefins with Ethyl Cyanoacetate by $\mathrm{Mn}^{3+}\text{-}\mathrm{Mediated}$ Anodic Oxidation


Ryushi SHUNDO, * Ikuzo NISHIGUCHI, * Yoshiharu MATSUBARA, * and Tsuneaki HIRASHIMA

Osaka Municipal Technical Research Institute, 1-6-50, Morinomiya, Jyoto-ku, Osaka 536

*Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashi-Osaka 577

Novel carbon-carbon bond formation of non-activated olefins with ethyl cyanoacetate has been developed by anodic oxidation using only a small amount of Mn(OAc)_2 . $^4\text{H}_2\text{O}$ to give selectively either saturated or unsaturated coupling products depending upon the presence of a catalytic amount of Cu(OAc)_2 .

Manganese triacetate(Mn(OAc) $_3$ ·2H $_2$ O) has been often used as a conventional reagent for oxidative carbon-carbon bond formation such as formation of dihydrofuranes, ^{1a)} carbolactonization of olefins, ²⁾ and coupling of olefins with aldehydes or ketones. ³⁻⁵⁾ The synthetic utility of this method, however, has been considerably limited because of less reproducibility of the results, possibly due to much sensitivity of Mn(OAc) $_3$ ·2H $_2$ O toward water and oxygen, ^{2a,6)} employment of at least 2 equiv. moles of this relatively unstable metal-salt having rather high molecular weight relative to those of olefins and products, and troublesome treatment of the resulting

large amount of Mn(OAc)2.4H2O.

In this communication, we wish to present $\mathrm{Mn^{3+}}$ -mediated coupling of non-activated olefins (1) with ethyl cyanoacetate (2) by indirect electrooxidation in the presence of only a small amount of stable and easily available $\mathrm{Mn(OAc)_2^*4H_2O}$, which may be electrochemically oxidized to a $\mathrm{Mn^{3+}}$ -species, an active oxidizing reagent in the reaction system, 7) to give the corresponding α -saturated alkyl cyanoacetates 3 (condition A). It is quite noteworthy that addition of a catalytic amount of $\mathrm{Cu(OAc)_2}$ - $\mathrm{H_2O}$ brought about dramatic change in the formation of the products to give the corresponding α -allylic adducts 4 selectively (condition B).

A typical procedure is as follows: A solution of 4.92 g (60 mmol) of anhydrous sodium acetate in 80 ml of the mixed solvent of glacial acetic acid and ethyl acetate (volume ratio 13:3) was placed in anodic and cathodic chambers of a divided cell equipped with carbon rod electrodes as an anode and a cathode, and a ceramic cylinder as a diaphragm. To the anolyte were added 0.49 g (2 mmol) of $Mn(OAc)_2 \cdot 4H_2O$, 0.82 g (10 mmol) of cyclohexene (1e) and 3.39 g (30 mmol) of 2 (Under the condition B, 0.10 g (1 mmol) of $Cu(OAc)_2 \cdot H_2O$ was also added.). The electrolysis was carried out under the constant-current conditions (current density: 2.0-3.0 A/dm²) at 40 °C with magnetic stirring until 2 F/mol of electricity based on 1e was passed through the system. The usual work-up followed by column chromatography of the crude product mixture over silica gel (elute: $n-C_6H_{14}/EtOAc = 9/1$) afforded ethyl cyclohexylcyanoacetate (3e) as a single product in a 60% yield (1.17 g) based on 1e (Under the condition B, ethyl (2-cyclohexyl)

Table 1.	Mn ³⁺ -Mediated Anodic Coupling of Non-Activated Olefins 1a-h
	with Ethyl Cyanoacetate 2

Olefin	Yield of products/% ^{a),b)}					
R ¹	R ²			ition A		
CH ₃ -(CH ₂) ₂ -	Н	(1a)	62	(3a)	45 ((4a) ^{C)}
$CH_3 - (CH_2)_4 -$	Н	(1b)	54	(3b)	55 ((4b) ^{C)}
$CH_3 - (CH_2)_6 -$	Н	(1c)	56	(3c)		(4c)C)
-(CH ₂) ₂	=	(1d)	64	(3d)	44 (4d)
-(CH ₂) ₃ -		(1e)	60	(3e)	53 (4e)
-(CH ₂) ₄ -		(1f)	51	(3f)	54 (4f)
-(CH ₂) ₅ -		(1g)	60	(3g)	47 (4 g)
-(CH ₂) ₉ -		(1h)	50	(3h)	49 (4h)

a) Satisfactory spectroscopic analytical results (IR, $^1\text{H-NMR}$, and MS) were obtained for all the products $3\mathbf{a}-\mathbf{h}$ and $4\mathbf{a}-\mathbf{h}$. b) Isolated yields based on the olefins 1, which have not been optimized as yet. c) The products $4\mathbf{a}-\mathbf{c}$ were found to consist of a (E)-stereoisomer exclusively.

cyanoacetate (4e) was obtained as a main product in a 53% yield accompanying only a trace amount of 3e.).

Under the similar conditions, Mn^{3+} -mediated indirect anodic oxidation brought about the carbon-carbon bond formation between a variety of non-activated olefins 1 and ethyl cyanoacetate(2) to give selectively either the corresponding saturated or unsaturated coupling products, 3a-h or 4a-h, in good to moderate yields depending upon the presence of a catalytic amount of $\mathrm{Cu}(\mathrm{OAc})_2\cdot\mathrm{H}_2\mathrm{O}$.

It is interesting that the present oxidative carbon-carbon bond formation took place regioselectively according to the Markownikoff's rule as shown for the reaction of 1a-c. On the other hand, treatment of 2-octene (cis (1i) and trans (1j) mixture) as an olefin under the similar condition A led to the formation of a mixture consisting of 2-octyl and 3-octyl adducts (3i,j) in the ratio of 66:34. The similar phenomenon was observed for the reaction under the condition B to give a mixture of 2-(3-octenyl) and 3-(1-octenyl)adducts (4i,j) in the ratio of 69:31. These results may indicate that regioselectivity of the carbon-carbon bond formation in the present electrooxidation is principally attributed to steric effect as well as stability of the generating intermediates. It may be also noteworthy that only (E)-allylic coupling products, 4a-c and 4i were obtained from the reaction of 1a-c and 1i,j with 2 under the condition B.

$$R + NC-CH_2-COOEt$$

$$R + COOEt$$

$$R +$$

Although a detailed mechanism of the present $\mathrm{Mn^{3+}}$ -mediated coupling has not been clear as yet, the remarkable steric effect⁸) may suggest the generation of a $\mathrm{Mn^{2+}}$ -complexed methine radical species (5) from the reaction⁵,⁹) of the electrogenerated $\mathrm{Mn^{3+}}$ -ion¹⁰) with 2. Presence of $\mathrm{Cu(OAc)_{2^{\circ}H_{2}O}}$ may remarkably accelerate further oxidation of the radical intermediates (6) to the corresponding organocopper complexes¹¹) followed

by β -elimination to give the unsaturated coupling products 4. Further study on the present Mn3+-mediated anodic coupling is in progress.

This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas (No. 01607001) from the Ministry of Education, Science and Culture.

References

- a) E. I. Heiba and R. M. Dessau, J. Org. Chem., 39, 3456 (1974); b) W. J. de Klein, Recueil. J. Royal Neth. Chem. Soc., 94, 48 (1975)
- a) W. E. Fristad and J. R. Peterson, J. Org. Chem., 50, 10 (1985); b) N. Fujimoto, H. Nishino, and K. Kurosawa, Bull. Chem. Soc. Jpn., 59,
- 3161 (1986); and others are cited therein.
 W. J. de Klein, "Organic Synthesis by Oxidation with Metal Compounds," ed by W. J. Mijs and C. R. I. de Jonge, Plenum Press, New-York (1986), pp. 261-314.
 Recently Mn³⁺-based oxidative free-radical intramolecular cyclizations
- have been reported by two groups independently.
- M. A. Dombroski, S. A. Kates, and B. B. Snider, J. Am. Chem. Soc., $\frac{112}{54}$, 2759 (1990); B. B. Snider and J. J. Patricia, J. Org. Chem., $\frac{54}{112}$, 38 (1989); and others are cited therein.
- F. Viebock, Chem. Ber., <u>67</u>, 197 (1934); S. A. Zonis, Sb. Statei Obshch. Khim., <u>2</u>, 1091 (1953); Chem. Abstr., <u>49</u>, 5414q (1955). Recently Mn³⁺-mediated carboxymethylation of butadiene was reported in
- patents. See, Monsanto, U. S. Patent, 4526990, 4560775, 4564689 (1986). A dimerization product of the radical derived from 2 was not formed in any detectable amount under the employed conditions. Though this reason is not clear as yet, complexation 9) of the radical with a ${\rm Mn}^{2+}$ -ion may inhibit the dimerization by steric hindrance.
- A. Citterio, R. Santi, T. Fiorani, and S. Strologo, J. Org. Chem., 54, 2703 (1989).
- 10) The redox potential of the couple Mn(III)/Mn(II) was reported to be 1.04 V vs. NHE. See, R. U. G. Khirishnam, R. V. Venka, B. Sethuram and R. Naraneeth, J. Electroanal. Chem., 133, 1103 (1982).

 11) B. B. Snider, R. Mohan, and A. Kates, J. Org. Chem., 50, 3661
- (1985); R. Mohan, S. A. Kates, M. A. Dombroski, and B. B. Snider, Tetrahedron Lett., 28, 845 (1987).

(Received September 18, 1990)